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Abstract

We use a New Keynesian model with an effective lower bound (ELB) and a general stochastic process

for the natural rate to study optimal monetary policy. The central bank has perfect commitment and an

interest rate smoothing term in its loss function. Despite the ELB binding occasionally and endogenously,

we can derive a closed-form solution for the optimal interest rate: it is the maximum of zero and a weighted

average of all past realizations of the output gap. This implies that the optimal interest rate (i) takes a

simple form, (ii) is path dependent at all times, (iii) should be pre-emptively lowered when close to the

ELB –or kept at zero if at the ELB– if and only if the weighted average of past output gaps is negative,

and (iv) behaves very differently from the Taylor rule. We illustrate these insights by solving for key

variables in the New Keynesian model using a neural network.

1 Introduction

For more than a decade, short-term nominal interest rates in many advanced economies –—including

Japan, the US and Europe–— have been against or close to their effective lower bound. There is ample

awareness by both academics and policymakers that visits to the effective lower bound (ELB) may be

more frequent and last longer than in the past. One of the main forces highlighted in the literature

in driving interest rates towards their ELB are shocks to the natural rate of interest, especially in an

environment in which the overall level of the natural rate is already persistently low.

In this paper, we study how monetary policy should respond to shocks to the natural rate when

constrained by the ELB. We use the simplest textbook version of the linearized New Keynesian model

(NK), but augmented by adding an ELB and a preference for smooth interest rates for the central bank.
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The only exogenous disturbance in the model are shocks to the natural rate. We use this NK model as

our starting point not only because we can obtain transparent results, but also because it continues to be

the most common workhorse model for macroeconomic analysis especially at central banks. We assume

that the interest rate is the central bank’s sole policy tool and abstract from unconventional policies

that do not involve the interest rate, such as large-scale asset purchases. The central bank’s preference

for smooth interest rates is consistent with empirical evidence and can be microfounded in several ways,

including from transaction frictions.1

We also simplify the analysis by assuming prices are fully rigid, with zero inflation throughout, which

allows us to focus on how shocks to the natural rate affect the economy through their effect on the output

gap as governed by the IS equation. In models without the ELB, the IS equation is usually not a binding

constraint for the central bank, and all monetary policy tradeoffs stem from the Phillips Curve. Instead,

with an ELB, the IS equation can be binding. Indeed, for a given path of the output gap, the behavior

of inflation is governed by the Phillips Curve and is the same with or without the ELB, and with fully

or only partially rigid prices. Therefore, our strategy of considering fixed prices allows us to concentrate

on what we consider is one of the primary differences between models with and without the ELB. Of

course, studying inflation with partially rigid prices remains an important question that we hope can be

informed by our results with fully rigid prices.

Despite the importance of the question and the copious research on how to deal with the ELB, an

explicit characterization of how optimal policy responds to shocks to the natural rate has not yet been

achieved with a high degree of generality. Analytical results usually abstract from uncertainty altogether,

and numerical studies tend to be calibration-specific.

In this paper, We take a step towards greater generality by using a mathematical approach not yet

used in the literature, the continuous time stochastic maximum principle. This maximum principle allows

us to derive necessary and sufficient first order conditions (FOC) for the central bank’s optimal policy

problem under commitment. We derive these FOC using a generic Ito stochastic process for the natural

rate. By the Martingale Representation Theorem, this means that we consider all measurable square

integrable processes for the natural rate, a very general class.

Using the FOC and the maximum principle, we can derive a closed-form expression for the optimal

interest rate as a function of the output gap, and a single backward stochastic differential equation

(BSDE) for the output gap. A BSDE is similar to a (forward) stochastic differential equation, only that

instead of the initial condition being given, it is the terminal value of the process that is prescribed,

reflecting the forward-looking nature of the households’ rational expectations. The BSDE for the output

gap in our model is quite simple, with a drift that is piecewise linear as a function of the nominal rate

and linear as a function of the natural rate, allowing for transparent interpretation. Coupled with the the

(forward) stochastic differential equation for the natural rate, the FOC characterize optimal monetary

policy as the solution to a system of forward-backward differential equations (FBSDEs).

We show how to solve this FBSDE using a neural network, an efficient solution method that essentially

only requires the use of existing standard software packages (in this case, Tensorflow for Python). Neural

1Eggertsson and Woodford (2003), chapter 6.
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networks offer a number of advantages over other approaches. Because neural networks can be scaled

without much effort to hundreds of state variables, the method we use can be immediately applied to

big-scale dynamic stochastic general equilibrium (DSGE). One implication of this approach is that it is

straightforward to add additional states, like inflation, to the model. By contrast, certain closed-form

approaches to continuous time optimal control with constraints, like the application of Tanaka’s formula,

cannot incorporate more than one state variable (Chen and Zhou, 2004).

Additionally, neural networks make it possible to solve for all endogenous variables not only as

functions of the state variables, but also treating parameters as additional “state variables” of the neural

network. In this way, after the neural network is trained, it provides all endogenous variables of the

model as a function not only of the model’s state variables, but also of the underlying parameters. The

implication is that the solution of the model can be evaluated in a matter of seconds for any parameter

values and any value of the state variables. Although not exactly an analytical solution, this strategy

nevertheless significantly alleviates the limitations imposed by numerical solutions that rely on specific

calibrations, as the entire parameter space can be explored at close to zero marginal cost. For larger

models, adding parameters as inputs to the neural network may provide a substantial speed advantage

when estimating parameters, since the solution to the model does not need to be re-computed every time

a new parameter combination is tried. We illustrate this idea by making the initial level of the natural

rate, one of the parameters of our model, an input to the neural network.

Armed with the closed-form expression for the optimal interest rate and the solution to the BSDE

that governs the behavior of the output gap, we provide five results that are, to the best of our knowledge,

new to the literature.

Our first result is that the optimal interest rate takes a simple form. It can be written as the maximum

of zero and a weighted average of all past realizations of the output gap, with weights that discount past

realizations exponentially at the same rate as the representative household’s. It can be communicated

in one sentence, and without any reference to the natural rate of interest.

Our second result is that optimal interest rates are path dependent at all times. Until now, only

other elements of policy, such as the time-varying targets in targeting rules, had been shown to be

path-dependent,2 but not interest rates. Many authors consider rules for nominal interest rates that

closely track either the natural rate (in a path-independent way) or a past average of inflation (in a

path-dependent way). Instead, we show that tracking a weighted average of past output gaps can also

be beneficial.

Our third result is that, whether a central bank close to the ELB should “keep its powder dry” (keep

rates higher than otherwise so they can be lowered more in the future if needed, for example, to avoid

hitting the ELB) or engage in “insurance cuts” (keep rates lower than otherwise to stimulate the economy

now so as to minimize the probability of hitting the ELB) depends not on the current level of the natural

rate or the output gap, but on the entire path of output gaps. Our model results imply that for the same

level of the natural rate and for the same level of the output gap, the central bank may sometimes find

it optimal to keep its powder dry, and do insurance cuts at other times.

2Eggertsson and Woodford (2003).
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Fourth, there is considerable debate regarding the appropriate duration of forward guidance once at

the ELB. In particular, results regarding how the length of the promise to keep nominal rates at zero

should change when shocks hit the economy, or as a function of the parameters of the model, have not

been thoroughly investigated. We provide a simple answer: interest rates should be kept at zero as long

as the exponential weighted average of output gaps remains negative, and not any longer. In addition,

given the weighted average nature of the interest rate, the expected “liftoff” date changes slowly over

time, so that any one shock only has a muted impact on the optimal duration of forward guidance.

Fifth, we show that the the truncated Taylor rule (the maximum of zero and the interest rate pre-

scribed by the Taylor rule) is a poor approximation to optimal policy for any choice of Taylor rule

coefficients despite being fully optimal if the ELB were removed.

Finally, our paper serves as a proof-of-concept for the application of machine learning methods to the

analysis of continuous-time, stochastic, non-linear New Keynesian models. Given the burgeoning research

on ELB-related phenomena, our paper provides a clear working example of an important addition to the

toolkit available to economists.

The remainder of the paper is structured as follows. Section 2 discusses related literature. Section 3

formulates the model. Section 4 present our computational approach using neural networks. Section 5

discusses the results and provides intuition. Section 6 concludes.

2 Related literature

Our paper adds to research on monetary policy at the effective lower bound. Previous analytic results

typically assume a combination of: very simple processes for the natural rate such as two-state Markov

processes, deterministic, steady-state-only or perfect foresight economies, or that the natural rate reverts

back to its steady-state level in a deterministic manner and stays there forever. For example, the

seminal work of Eggertsson and Woodford (2003) studies a process for the natural rate of interest that

is unexpectedly negative in period 0 and stays constant unless it reverts back to its steady-state level

forever, which happens with a fixed probability in every period. Werning (2011) considers a deterministic

economy in which the natural rate goes from a constant negative value to its steady state level at a known

future time. This allows him to employ a deterministic version of the maximum principle to solve for the

optimal interest rate in closed-form. Other papers partially or fully relax these simplifying assumptions,

but must then resort to numerical methods on calibrated models, or to the study of exogenously specified

monetary policy rules (rather than optimal policy). Although a numerical approach can be very insightful,

it is ill-suited to answer questions with high degree of generality. For any given set of numerical results,

one can always wonder whether they are robust to a different specification of the exogenous processes,

or under all reasonable parameter combinations of the model.

Adam and Billi (2006) develop a numerical algorithm to solve the NK model by adding two state

variables that allow them to re-write the non-recursive problem of the central planner in recursive form,

so that standard dynamic programming techniques can be used. Their main findings are that, first,

“nominal interest rates may have to be lowered more aggressively in response to shocks than what is
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instead suggested by a model without lower bound” and, second, that “the presence of shocks that lead

to zero nominal rates alters also the optimal policy response to non-binding shocks”. Eggertsson et al.

(2020) develop a computationally efficient numerical algorithm to solve for models with an ELB under

the special assumption that the underlying shock process is a two-state Markov process with an absorbing

state, similar to Eggertsson and Woodford (2003). They find that “previously suggested policy rules –

such as price level targeting and nominal GDP targeting – do not perform well when there is a small

drop in the price level, as observed during the Great Recession, because they do not imply sufficiently

strong commitment to low future interest rates”. Other papers use simplifying assumptions to obtain

analytical answers. Mertens and Williams (2019) consider a version of the NK model with one demand

shock and one supply shock, both of which follow uniform, iid, distributions. Rather than studying

the optimal policy, they compare outcomes across different exogenously given monetary policy rules.

The combination of uniformly distributed iid shocks and exogenous rules provides enough tractability to

derive solutions in closed form. They find that average-inflation targeting and price-level targeting can

both reduce the adverse effects of the lower bound on the economy.

Bilbiie (2019) similarly considers a two-state Markov process for the natural rate in a discrete time,

infinite horizon NK model. In particular, the natural rate takes on one of two values, and when it attains

its steady state (positive) value, it remains there in perpetuity. The paper illustrates the path-dependence

of monetary policy by providing a closed-form solution for optimal forward guidance, i.e., the length of

time that interest rates ought to remain at zero after a period of negative natural rates. He approximates

this policy rule as half the duration of the liquidity trap times the “disruption” (the depth of the fall in

the natural rate below 0).

Nakata and Schmidt (2019) consider a discrete-time stochastic NK model where the natural rate

follows an AR(1) process. They estimate this model numerically to show that incorporating a smoothing

term for the interest rate, even if not justified by the microfoundations of the model, reduces the central

bank’s losses for a central bank without commitment. The induced preference for gradual changes in

interest rates makes it easier to have longer forward guidance periods that mimic commitment. They

solve for the optimal numerical weights on the smoothing term in the central bank’s loss function taking

their model calibration as given.

Regarding the debate of whether interest rates should be cut pre-emptively when close to the ELB,

the literature provides conflicting advice. Duarte et al. (2020) and Williams (2009), for example, argue

for the insurance cut view, while Taylor (2017) argues for the alternate view.

Our paper is also related to a growing literature on machine learning and neural networks. While

the primary applications of neural networks are to classification problems – the problem of correctly

assigning inputs to output categories – recent work has applied them to more complex, non-discrete

problems. In the vein of our study, previous papers have employed neural networks to solve ordinary

differential equations (e.g., Malek and Shekari Beidokhti (2006)) and high-dimensional stochastic dif-

ferential equations (Raissi (2018), Chen and Wan (2020)). A more recent literature has applied neural

networks specifically to the solution of difference equations that characterize state dynamics in economic

models. Ashwin (2020) uses neural networks to classify the determinacy of rational expectations equi-
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libria in a discrete, stochastic New-Keynesian model with a Taylor rule. By having agents “learn” (i.e.,

form expectations of the state process) using neural networks, he analyzes which equilibria yield explosive

expectations. Fernández-Villaverde et al. (2019), meanwhile, applies neural network approximation to

an infinite-dimensional heterogeneous agent model, to solve for agents’ conditional expectation of the

perceived law of motion of aggregate debt. Our paper illustrates another example of how machine learn-

ing methods can be efficiently used to solve a large class of multi-state, non-linear, stochastic model with

occasionally binding constraints that are common to monetary policy and analysis.

3 A Benchmark New Keynesian Model with a ELB

Our starting point is the standard textbook version of the New Keynesian (NK) model of Gaĺı (2015) and

Woodford (2011). Households have risk averse utility over differentiated products and supply labor to an

intermediate goods producing sector. Intermediate goods have a constant returns to scale technology with

exogenous productivity and labor as only input. These intermediate goods producing firms maximize

profits subject to a demand curve for differentiated products and Calvo style price stickiness. Their

output is sold to the final goods producers in a monopolistically competitive way. Government spending,

transfers, and taxes are all equal to zero. The central bank sets the short-term (instantaneous) nominal

interest rate by paying interest on base money in the cashless limit. For simplicity, we assume nominal

prices are fully fixed, so inflation is constant and identically zero.

Time is continuous and indexed by t ∈ [0, T ]. There is a single source of uncertainty modeled as

a one-dimensional Brownian motion {Wt, 0 ≤ t ≤ T} defined on a probability space (Ω,F , P ). We let

{Ft, 0 ≤ t ≤ T} be the natural filtration of {Wt}, where F0 contains all the P -null sets of F , and denote

the conditional expectation E [· | Ft] by Et [·]. The Brownian motion Wt will represent shocks to the

natural rate of interest, defined below.

We study the problem of a central bank that chooses the path of short-term nominal interest rates it

in order to minimize a quadratic approximation to the social welfare function, subject to the equilibrium

conditions of private sector optimality and market clearing. We assume that the central bank has a

perfect commitment technology and commits to implementing its optimal policy from the point of view

of t = 0. The central bank solves:

min
{it}Tt=0

1

2
E0

∫ T

0

e−βt
(
x2t + αi2t

)
dt (1)

dxt =
1

σ
(it − rt) dt+ ztdWt (2)

xT = 0 (3)

drt = µ (t, rt) dt+ v (t, rt) dWt (4)

r0 = r (5)

i ≥ 0 (6)

The variable xt is the output gap, the log-deviation of output from the hypothetical output that would

prevail in the flexible price, efficient allocation. Henceforth, for brevity, we refer to the output gap simply
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as output. The variable rt is the exogenous natural rate of interest, defined as the real interest rate that

would prevail in the flexible price, efficient economy with xt = 0 for all t. The natural rate is stochastic

because it reflects the stochastic productivity shocks to firms. The nominal interest rate it is constrained

to remain above some effective lower bound that we take to be zero without loss of generality, as shown

in equation (6).

Equation (1) states that, at time t = 0, the central bank minimizes a quadratic approximation of

the true social welfare loss function by choosing the path of nominal interest rates {it, 0 ≤ t ≤ T}. The

loss function penalizes expected deviations of output xt and the nominal interest rate it from zero –

the interest rate smoothing term– with future losses discounted at a rate β > 0. The constant α > 0

measures the relative weight that the social welfare function places on deviations from zero in the interest

rate relative to output. The central bank minimizes its loss function subject to two constraints. The

first constraint in equation (2) is the IS curve or, equivalently, the representative agent’s Euler equation

(in discrete time, the IS equation is only an approximation of the Euler equation, but in continuous

time the Euler equation is already linear). The constant σ−1 > 0 is the elasticity of intertemporal

substitution of the representative agent, and ztdWt is an expectational error term, with the variable

zt determined endogenously. Equation (3) is a terminal condition for output which states output must

be zero at T . This terminal condition is the linearized counterpart of the optimality condition of the

representative household that states that financial wealth must be zero at time T (having positive wealth

at T is suboptimal, as it could have been consumed without changing any prior decisions). The second

constraint, in equation (4), gives the stochastic process for the natural rate rt. We assume that rt follows

an Ito diffusion with drift and volatility given by the functions µ (·, ·) and v (·, ·), respectively. Equation

(5) gives the initial condition for rt, where r is a constant.

Mathematically, equation (2) is a backward stochastic differential equation (BSDE) with unknowns

(xt, zt) and terminal condition given by equation (3). It reflects the forward-looking rational expectations

nature of the Euler equation of the representative agent. It is called a backward equation because the

terminal condition is given, and the equation must be solved backward from t = T , when the value of xt

is known, to t = 0. Equation (4) is a forward stochastic differential equation (FSDE) in the unknown rt

with initial condition given by (5). Therefore, the central bank solves a finite horizon stochastic control

problem constrained by a system of forward-backward stochastic differential equations (FBSDE).

3.1 The Stochastic Maximum Principle

In this section, we derive the central bank’s necessary and sufficient conditions for a solution to the central

bank’s optimization problem using the stochastic maximum principle.3 We define the Hamiltonian by

H (t, r, x, z, i, λ, p, q) =
1

2
e−βt

(
x2 + αi2

)
− 1

σ
(i− r)λ+ µ (t, r) p+ v (t, r) q (7)

3There are many versions of the stochastic maximum principle. We use the one in Øksendal and Sulem (2015).
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The adjoint processes are λt and (pt, qt), and satisfy

dλt =
∂H

∂x

∣∣∣∣
t

dt+
∂H

∂z

∣∣∣∣
t

dWt (8)

λ0 = 0 (9)

dpt = − ∂H

∂r

∣∣∣∣
t

dt+ qtdWt (10)

pT = 0 (11)

where we use the shorthand notation ∂H
∂x

∣∣
t

to denote ∂H
∂x

evaluated at (t, rt, xt, zt, it, λt, pt, qt), and

similarly for the other derivatives. The system (8)-(11) is a system of FBSDE, with forward process λt

and backward process (pt, qt). The adjoints λt, pt and qt have the economic interpretation of shadow

prices analogous to Lagrange multipliers in discrete-time constrained optimization – λt is associated with

the IS equation (2), and (pt, qt) with, respectively, the drift and stochastic part of the process for the

natural rate in (4). The initial condition λ0 = 0 in (9) reflects the intuition that the initial level of output

is unconstrained, unlike the terminal value xT , which is constrained to be zero. The terminal condition

pT = 0 in (11) reflects the intuition that at the terminal time T , the central bank is unconstrained by

the dynamics of the natural rate, since at T they do not affect the future of the economy any longer.

Computing the derivatives in (8)-(11), we get

dλt = e−βtxtdt (12)

λ0 = 0 (13)

dpt = −
(

1

σ
λt +

∂µ

∂r
(t, rt) pt +

∂µ

∂v
(t, rt) qt

)
dt+ qtdWt (14)

pT = 0 (15)

We now minimize the Hamiltonian with respect to the control i ≥ 0. If the solution is interior, the

FOC is

0 =
∂H

∂i
= e−βtαi− 1

σ
λ

which gives

i =
eβt

ασ
λ

If the solution is a corner solution, i = 0. It follows that the optimal interest rate i∗t satisfies

i∗t = max

{
0,
eβt

ασ
λt

}
(16)

Using (16) in (2)-(5) and (12)-(15), we get the following system of FBSDE
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Forward SDEs :

drt = −ρr (rt − µr) dt+ σrdWt

dλt = e−βtxtdt

r0 = r

λ0 = 0

Backward SDEs :

dxt =
1

σ

(
1

σα
max

{
0,
eβt

ασ
λt

}
− rt

)
dt+ ztdWt

dpt = −
(

1

σ
λt +

∂µ

∂r
(t, rt) pt +

∂µ

∂v
(t, rt) qt

)
dt+ qtdWt

xT = 0

pT = 0 (17)

where a solution is a tuple (rt, λt, xt, pt, it, zt, qt) such that the system in (17) holds, and each variable is

adapted to the filtration induced by (Wt, xT , pT ) (i.e. does not use future information about Wt, xt, pt).

This system of FBSDEs are the necessary and sufficient conditions for optimality of the central bank’s

problem (1)-(6). We assume enough regularity conditions for the functions µ (·, ·) and v (·, ·) such that

the system (17) has a unique solution.4

The process for λt can be solved explicitly in terms of xt

λt =

∫ t

0

e−βsxsds (18)

so that

i∗t =
1

ασ
max

{
0,

∫ t

0

e−β(s−t)xsds

}
(19)

dxt =
1

σ

(
1

σ2α2
max

{
0,

∫ t

0

e−β(s−t)xsds

}
− rt

)
dt+ ztdWt (20)

Equation (20) and its terminal condition xT = 0 provide a full characterization of the solution to the

central bank’s problem. If xt is known, then i∗t can be determined using equation (19), λt using equation

(18), and (pt, qt) using equation (14). We solve equation (20) numerically using a neural network.

4 Neural Networks

In this section we provide an overview of neural networks and frame the solution to the FBSDE from

(17) as a supervised learning problem.

4For example, they are uniformly Lipschitz .
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4.1 Neural Network Overview

Neural networks refer to a class of semi-parametric models used to approximate nonlinear functional

relationships, and more generally map input data to a given output. The theoretical basis for such

networks stems from the Universal Approximation Theorem, which holds that any measurable function

can be approximated arbitrarily well by some feed-forward (e.g. neural network) architecture (Cybenko

(1989)).

The basic structure of a neural network involves of a series of “layers”, a collection of nodes known

as “neurons” that constitute each layer, and an architecture that determines how the neurons connect

across layers. An initial layer inherits the input data and transforms it for input into the second layer;

each successive layer operates on the outputs (neurons) from previous layer until the final layer returns a

predicted output. Since intermediate layers are learned, non-parametric compositions of previous layers’

neurons, they have no readily available interpretation and are often known as “hidden layers.”

Within each layer are a chosen number of quasi-affine functions called neurons. The network assigns

each neuron a scaling coefficient (“weight”), a linear shift (“bias”), and a nonlinear activation function

that transforms the weighted sum of neurons from the antecedent layer. The connection between neurons

is illustrated in Figure 1. The three neurons in layer n connect to neuron Xn+1 in layer n+ 1. Given the

weights (wi) and biases (bi) assigned to neurons Xn
i , neuron Xn+1 takes a weighted sum of all neurons in

the antecedent layer that fed into it, and applies the activation function σ(·). All neurons in layer n+ 1

will then feed forward into neurons in layer n+ 2 in a similar fashion, until the final layer is reached.

Xn
1

Xn
2

Xn
3

Xn+1

= σ (
∑
wiXi + bi)

I1

I2

I3

Layer n Layer n + 1

Figure 1: Connection Between Neurons

The architecture and hyperparameters of the model – the depth (in layers) of the network, the number

of neurons in each layer, the structure of connections between neurons, and the activation functions –

are fixed ex ante. Meanwhile, the weights and biases of each neuron are what is determined through

model training. Training neural networks involves the definition of a loss function over the predicted

output. Given the network-constructed output, the loss function computes the associated error, and the

neural network updates the weights and biases of each neuron. One common approach (and the one used

in this paper) is to update the parameters in the direction of the negative gradient, by computing the

partial derivatives of the loss function with respect the parameters of each neuron, a process known as

backpropagation. To reduce the computational burden of computing a full set of partial derivatives on
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each instance of training, it is also common to compute the loss and implement backpropagation using

a randomly selected “batch” of the data in each iteration (stochastic gradient descent).

4.2 FBSDE Neural Networks

We construct our neural network as a variation of Raissi (2018). For a given system of FBSDEs, with

Xt ∈ RD, Yt ∈ R, Zt ∈ RD, Wt ∈ RD.

dXt = µ (t,Xt, Yt, Zt) dt+ σ (t,Xt, Yt) dWt, t ∈ [0, T ]

X0 = ξ

dYt = ϕ (t,Xt, Yt, Zt) dt+ Z′tσ (t,Xt, Yt) dWt, t ∈ [0, T ]

YT = g (XT )

Raissi employs a 5-layer neural network to parametrize the quasi-linear partial differential equation,

ut = f
(
t, x, u,Du,D2u

)
, with the property that

Yt = u (t,Xt) (21)

Zt = Du (t,Xt) (22)

In our neural network,

Xt =
(
rt λt

)′
Yt = xt

Zt =
(
zt qt

)′
A D + 2-dimensional first layer accepts the D-dimensional vector of forward states (the output gap

Xt), the time domain (t), and the initial condition for the natural rate (r0). The subsequent four layers

contain 40 neurons each, with sinusoidal activation functions. A final, one-dimensional layer returns

the prediction of ut. The backpropagation method employs the ADAM optimizer, with 100,000 total

iterations at various learning rates.5 While the input draws of the Brownian motion Wt are always

random, we use stochastic gradient descent on the r0 input by drawing random batches of r0 from

a uniform interval in each iteration of the training. Figure 2 provides a representation of a densely

connected neural network similar to the one we use, but with only 10 neurons per layer (our model uses

40 neurons in each intermediate layer).

As in Raissi, the loss function is computed as the error to the Euler-Maryama approximation method,

given the Zt, Yt implied by the current iteration of ut. Recall that the Euler-Maryama scheme expresses

Xn+1 ≈ Xn + µ (tn, Xn, Y n, Zn) ∆tn + σ (tn, Xn, Y n) ∆Wn (23)

Y n+1 ≈ Y n + ϕ (tn, Xn, Y n, Zn) ∆tn + (Zn)′ σ (tn, Xn, Y n) ∆Wn (24)

5Following Raissi, we use, sequentially, 20,000 iterations at learning rate 10e−3; 30,000 iterations at learning rate 10e−4;

30,000 iterations at learning rate 10e−5; and 20,000 iterations at learning rate 10e−6.
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with

X0
m = ξ

The loss function is computed as

Loss =

K∑
k=1

M∑
m=1

N−1∑
n=0

∣∣∣Y n+1
m,k − Y

n
m,k − Φnm,k∆tn −

(
Znm,k

)′
Σnm,k∆Wn

m,k

∣∣∣2 +

K∑
k=1

M∑
m=1

∣∣∣Y Nn,k − g (XN
m,k

)∣∣∣2 ,
where M is the batch size of the Brownian motion, K is the batch size of the initial condition r0, N is

the number of discretized time periods,6 and

Φnm,k := ϕ
(
tn, Xn

m,k, Y
n
m,k, Z

n
m,k

)
Σnm,k := σ

(
tn, Xn

m,k, Y
n
m,k

)
More specifically, we let

µ (t,X, Y, Z) =

 −ρr (X1 − µr)

e−βtX2


ϕ (t,X, Y, Z) =

1

σ

(
1

σαi
max

{
0,
eβt

ασ
X2

}
−X1

)

σ (t,X, Y ) =

 σr 0

0 0


g (X) = 0

where X1 and X2 refer to the first and second entries of the vector X = (r, λ)′ respectively, and σ(·) is

such that that the FBSDE loads on only a single Brownian motion.

Given current network estimate, ût, of ut = f(t,X, u,Du,D2u, r0), the steps to computing the loss

are as follows. In each iteration,

1. Initialize model with X0 = (r0, λ0).

2. Compute Ŷ0, Ẑ0 by applying (21) and (22) to û0.

3. Construct X̃1 and then Ỹ1 using Euler-Maryama method on inputs Ŷ0, Ẑ0, and W0.

4. Directly compute Ŷ1 by applying (21) to û1.

5. Add to loss (Ŷ1 − Ỹ1)2

6. Repeat steps (2)-(5) for remaining N − 1 time periods, letting ŶN = g(X̂n).

7. Repeat steps (1)-(6) for M paths of the Brownian motions and K draws of r0 in the batch.

Steps 1 to 7 return a single scalar loss value. After the loss is computed, the optimizer computes the

gradient of the loss with respect to the neurons, and updates the parametrization of ût accordingly, by

varying the weights and biases.

6We let M = 100 and K = 12, with the training interval for r0 in [−0.1, 0.1].

13



For the natural interest rate, we pick µ(t, rt) = −ρr(rt − µr) and v(t, rt) = σr, so that the interest

rate follows an Ornstein–Uhlenbeck process, the continuous time analog of an AR(1) process. We use

the following value for the model’s parameters:

Parameter Value Description

β 0.02 Discount rate

αi 1 Weight on interest rate gap

1/σ 1 Elasticity of intertemporal substitution

ρr 1 Mean reversion speed, rt

µr 0.02 Long-run mean, rt

σr 0.05 Stochastic volatility, rt

Figure 3 illustrates the convergence of our neural network over its 100,000 iterations. To smooth

out the noise induced by the randomness of the batches, we plot rolling averages over windows of two

different sizes.

Figure 3: Neural Network Training Loss
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5 Optimal Monetary Policy

5.1 Intuition

Equation (18) shows that λt, the Lagrange multiplier associated with the IS equation, is an exponential

moving average of past realizations of output xt. If xt is not identically zero for all t — a zero-probability

event — then the IS equation is a binding constraint for the central bank. This is true at all times, even

when the nominal rate is unconstrained, away from the ELB. There are two reasons. First, even without

an ELB, the IS equation introduces a tradeoff between x2t and i2t , the two terms in the objective function.

The IS equation implies that in order to stabilize output and make the x2t term small in the loss function,

the central bank must change the interest rates more, which makes the i2t term in the loss function
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higher. Second, mere possibility of nominal rates being constrained by the ELB in the future makes the

IS equation binding today. This is in contrast to models without an interest smoothing term and without

the ELB, in which the IS equation is never binding.

The optimal nominal interest rate is completely determined by λt, as can be seen from equation (16).

When λt is positive, i∗t is proportional to λt, with constant of proportionality (σα)−1 e−βt. The intuition

is that the central bank would like to equate the marginal benefit of relaxing the IS equation constraint,

given by 1
σ
λt, with the marginal cost of changing it, given by e−βtαi. When λt is negative, the closest

the central bank can get to equalizing marginal benefit and marginal cost is to set i∗t to zero, as i∗t it is

constrained by the ELB. In a model without a ELB, i∗t would be proportional to λt at all times. If, in

addition to not having an ELB, there were no interest rate smoothing in the loss function, it would be

optimal to track the natural rate and set it = rt.

Combining equations (16) and (18) gives equation (19). The weighted average nature of it makes it

smooth over time, consistent with the central bank’s interest rate objective. Using (19) in the IS equation

gives equation (20), which describes the evolution of output in terms of the level of the exogenous natural

rate, the initial endogenous level of output x0, and the endogenous volatility term zt.

The left panel of Figure 4 plots four sample paths for zt where the only difference between paths is

that they use four different realizations of the path of the Brownian motion Wt. First, we note that all

paths for zt have a terminal value of zT = 0. In order for Xt to satisfy its terminal condition XT = 0

with certainty, it must be that zT = 0, or else xT would be stochastic. For values of t close to zero, zt has

higher values, reflecting the higher uncertainty that prevails early. Second, we note that the four paths

are essentially identical, suggesting that zt does not depend strongly on the realization of the Brownian

motion.

The right panel of Figure 4 also plots four paths for zt but, this time, the four paths were constructed

by using the same path of Wt but four different values for r0. We see that there is a small dependence of

zt on r0, especially for small t. Overall, the two panels of Figure 4 imply that zt is almost deterministic.

Figure 5 plots the relationship between the starting condition for the natural rate, r0, and the en-

dogenously determined initial condition for the output gap, x0. Higher initial natural rates imply larger

initial output gaps. Figure 6 is useful to understand why. We plot the dynamics of rt, xt, it and λt

when Wt = 0 for all t. Each of the four lines in the panels only differ in that a different starting point

for r0 was chosen. All paths must have xT = 0. Now consider the blue path, which has the highest

r0. Because rt is persistent, rt stays high and positive throughout. But, keeping it fixed, a high and

positive rt implies a negative growth rate of output: low real rates make the household save less and

consume more today, which leads to lower expected consumption in the future, i.e., a negative expected

growth rate for consumption and, since output equals consumption, a negative expected growth rate for

xt. Nominal interest rates start at zero and increase slowly, as can be seen in the bottom left panel of

the Figure, so they do not increase enough to undo the reduction in real rates. The combination of a

negative expected growth rate and a terminal condition of zero implies that x0 must be high enough

to hit zero after it has negative growth. As r0 decreases, the incentive of households to save increases,

increasing the growth rate of xt.
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Figure 4: Endogenous volatility term zt across paths of Wt and across r0
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Figure 5: Initial output gap, x0, as a function of initial natural rate r0
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The light blue line shows a path with the smallest (most negative) initial r0, while the orange and

red lines show intermediate values. The same logic applies to these paths: as we consider lower r0, the

incentive to save increases because the real rate increases. The smooth path for it does not reverse this

effect. In fact, for the two paths with the lowest r0, nominal rates are expected to be at the ELB at all

times, so that the only changes in it − rt stem from rt.

0.0 0.2 0.4 0.6 0.8 1.0
t

0.050

0.025

0.000

0.025

0.050

0.075

0.100

4 Paths of rt

0.0 0.2 0.4 0.6 0.8 1.0
t

0.02

0.00

0.02

0.04

4 Paths of xt

0.0 0.2 0.4 0.6 0.8 1.0
t

0.000

0.005

0.010

0.015

0.020

4 Paths of it

0.0 0.2 0.4 0.6 0.8 1.0
t

0.010

0.005

0.000

0.005

0.010

0.015

0.020

4 Paths of t

Figure 6: Model Paths: Wt = 0, ∀t

5.2 Impulse Response Functions

Figure 7 shows the impulse response functions (IRF) of xt (first column), rt (second column) and it

(third column) to a shock of size 1 at t = 0. The first, second, and third rows use a value of r0 of 0.01,

−0.06, and −0.10, respectively. Because the model is nonlinear, different initial conditions can lead to

different IRF.

To construct IRFs we first simulate 500,000 paths of xt, rt, and it for a given r0, and take the median

of each. We then compute the model-predicted path when W0 = 1, and Wt = 0, ∀t > 0. The impulse

response function is given as the “shocked” path less the median path.7

The IRF of the natural is the same in all cases, since the process for rt is homoskedastic. The natural

rate jumps at t = 0 and decays exponentially, consistent with the Ornstein-Uhlenbeck processes for rt.

The process for xt is also essentially the same for all cases, a consequence of z0 being essentially constant

in r0, as shown in Figure 4.

7An alternative definition of impulse response, where the benchmark is the simulated path when Wt = 0, ∀t yields near

identical results.
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The nominal rate, however, shows very different behavior depending on the value of r0. For r0 = 0.01,

the nominal rate is unconstrained and it smoothly increases, balancing the need to keep interest rates

smooth while also stabilizing output by increasing it to gradually counter the increase in rt

For r0 sufficiently negative, as in the second row, interest rates do not immediately jump in response

to the shock but stay 0 until the output gap has been positive for a long enough period (in this case

until t = 0.4). This reflects the notion of forward guidance highlighted by Eggertsson and Woodford

(2003), wherein the central bank maintains interest rates at the ELB longer than the natural rate states

negative. When interest rates are very negative, as in the third row of Figure 7, the shock is not large

enough to induce interest rates to escape their lower bound at any point in the interval.
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5.3 Forward Guidance

To understand forward guidance more deeply, and as a way to compare with the existing literature, we

construct in Figure 8 the optimal policy when the natural rate follows a path similar to that in Werning

(2011). That is, we input the precise Brownian motions such that rt adheres to r` < 0 until some time

t1, at which point it jumps up to rh > 0 for the remainder of the interval. Of course, this jump is not

anticipated in our model, unlike in 8 where everything is deterministic and known.

Figure 8 shows the optimality of forward guidance in his environment, with interest rates not rising

when the natural rate returns to positive, but at some later date t ≈ 0.65.

Figure 9 constructs an alternative scenario in which the natural rate is initially positive and later

becomes negative, beginning at rh > 0 and dropping unexpectedly to r` < 0. As noted, interest rates

do not drop immediately to 0, but gradually decrease. If the jump had been anticipated, as would be

the case in a deterministic economy, the interest rate would have changed before the jump in the natural

rate.
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Figure 8: Realized Paths: r` Discrete Jump to rh
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5.4 Model Dynamics

The solution provided by the neural network allows us to compute the paths of variables for any desired

path of the Brownian shocks. In this section, we illustrate how the optimal policy in response to various

shocks depends on the path history.

Figures 10-12 chart several paths of the model variables from different initial conditions for r0. When

the natural rate starts out large, as in Figure 10, it trends down toward its long run mean of 0.02. Since

natural rates tend to be positive along this path, the central bank raises interest rates, driving down

the output gap xt from its initial condition. When the natural rate starts out negative as in Figure 12,

natural rates tend to remain negative along the path toward their long run mean, and so nominal rates

adhere to their lower bound for the duration of the policy period. Figure 11 shows four paths of the

variables when natural rates begin close to µr. The output gap closely mirrors the path of the natural

rate, and interest rates exhibit persistent behavior, reflecting exponentially weighted averages of the

output gap.

In all cases, the nominal rate it starts at 0. This is due to the fact that it is a linear transformation

of λt. Since i0 is free, optimality implies that λ0 = 0, and so i0 = 0 as well. The initial condition of the

output gap, x0, does however vary with model parameters.

5.5 Path Dependence

The dependence of λt on the entire past path of xt introduces path-dependence in the optimal mone-

tary policy and the resulting process for output. That the optimal policy is path-dependent is already

documented in Eggertsson and Woodford (2003), Jung et al. (2005). There, the central bank chooses it

so as to achieve an output-adjusted price level that is equal to a time-varying price-level target. If it is

not possible to achieve the target, then the central bank chooses it = 0. In their implementation of opti-

mal policy, the path dependence is reflected in the time-varying price targets, which are path-dependent

because they are determined by the shortfalls in achieving the target in the last two periods. One remark-

able aspect of this proposal is that it does not require any estimate or knowledge of the process for the

natural rate, making it robust to the specification for the natural rate. How the central bank translates

the price-level targeting policy into a particular value of the interest rate, and whether the resulting

interest rate is path-dependent or depends on the natural rate, is left only implicitly characterized by a

system of non-linear difference equations involving Lagrange multipliers and inequality constraints.

To observe the role that weighted averages of xt play in the determination of optimal policy, we

consider two model-generated dynamics. Figure 13 plots two paths of xt that begin at the same r0 but

face difference realizations of Brownian shocks along the way. For t < 0.6, the blue-shaded line has

primarily positive output gaps while the orange-shaded line exhibits negative output gaps. As a result,

when rt jumps from a positive to negative value near t = 0.6, the optimal policy differs. For the positive

output gap path (blue), interest rates do not attain their lower bound, but rather stay positive, reflecting

its weighted history of positive output gaps. Meanwhile, the negative path (orange) maintains interest

rates at 0 even as rt fluctuates between positive and negative values in the interval t ∈ [0.5, 0.8]. This

behavior is consistent with its history of large negative output gaps for t < 0.5. A crucial, perhaps
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Figure 10: Model Paths: High r0 (r0 = 0.10)
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Figure 11: Model Paths: Medium r0 (r0 = 0.01)
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Figure 12: Model Paths: Low r0 (r0 = −0.05)
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surprising, policy implication is that central banks ought not necessarily reduce interest rates to 0 when

entering a liquidity trap. Rather, such a policy action is path dependent.

Similarly, Figure 14 shows how the history of xt matters even when the shock to the natural rate

is positive. In the two paths illustrated, both see an increase in rt from approximately −0.01 around

t = 0.4, to 0.02 around t = 0.6. But over this interval, only the path that featured a sufficiently positive

output gap over its history – the blue-shaded line – escapes the lower bound in response to the positive

shock to rt. Moreover, in both figures, the level of rt upon the realization of the shock is the same,

confirming that the current level of the natural rate is not important to the determination of optimal

policy
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Figure 13: Interest Rates and the History of xt: rt falls below 0
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Figure 14: Interest Rates and the History of xt: rt rises above 0

Figures 15, 16, and 17 show how path-dependence influences optimal policy in a different way. In

all three figures, the bottom panel shows simulated paths that use two different paths of the Brownian

motion (blue and orange lines). These two Brownian motions are randomly drawn following the true

distribution of the Brownian motion between times t = 0 and some t1. At t1, we set Wt1 = 1 and then,

for t > t1, we set Wt = 0. This exercise allows us to understand the effects of a shock on impact (at

t1) and the expected effects after impact (after t1, when we shut down the shocks) after there is some

meaningful history of the economy. The top panel in all figures plots the IRF of the t1 shock from the
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point of view of t1, that is, it plots the realized paths from the bottom panel minus its expectation

conditional on time t1− information. In particular, for t < t1, the paths of all variables are known so the

paths are all equal to zero.

In Figure 15, we pick the two paths of the Brownian motion such that r0 and rt1 are the same for both

paths, but rt between times 0 and t1 is mostly positive for one path and mostly negative for the other

path. Output and interest rates do not show path-dependence. However, nominal interest rates responds

strongly at t1 when the output gap has been mostly positive (blue line) while it does not respond at all

when the output gap has been mostly negative (orange line).

We repeat the same exercise if Figure 16, but now pick different initial levels of the natural rate r0.

The blue lines use r0 > 0 and the orange use r0 < 0. Before t1, the blue path is never against the ELB,

while the orange path is always at the ELB. Even though both paths undergo the same shock at t1, and

have the same level of natural rates rt1 , the orange path does not respond at all for an interval of time

after t1 (forward guidance), while the blue path responds immediately.

Last, Figure 17 considers a negative shock at t1. After the shock, the orange path hits the ELB and

stays there forever after, while the blue path, despite a larger reduction in the interest rate, only hits the

ELB later on. This case illustrates how, depending on the path the economy has taken, it is sometimes

better to lower interest rates towards the ELB immediately while it is better to leave room for further

cuts, even when the shock was the same.

6 Conclusion

This paper characterizes optimal monetary policy with commitment in a textbook New Keynesian model

that respects the ELB. While monetary policy at the ELB is an extensive area of research, ours is the first

paper, to our knowledge, to explicitly address a continuous-time, stochastic model with general processes

for the natural rate.

Using the stochastic maximum principle, we uncover several new insights into optimal monetary

policy. The key feature of optimality – that interest rates depend on an exponentially-weighted average

of past output gaps – formalizes many of the results anticipated in previous literature, including forward

guidance, interest rate gradualism, and price-level targeting. It also provides a new way to communicate

policy (in particular, how interest rates respond to shocks) in a simple manner that, crucially, does not

need to make any reference to the natural rate. Among the novel implications of this result are that

a central bank should not necessarily reduce rates to 0 when the natural rate turns negative, and that

individual, idiosyncratic shocks to the economy have comparatively small effects on the optimal duration

of forward guidance.

Our paper also demonstrates the use of neural networks for solving NK problems of this sort, and

models with endogenously binding constraints more generally. Neural networks provide a fast and scal-

able method for solving and analyzing the model’s solution without resorting to simplifications such as

linearization. This approach thus allows a much broader set of policy questions to be answered in a

quasi-analytic and computationally efficient manner.
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Figure 15: Impulse Response Functions: Positive shock to rt with similar departure (r0) and similar arrival

(rt1)
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Figure 16: Impulse Response Functions: Positive shock to rt with different departure (r0) and similar arrival

(rt1)
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Figure 17: Impulse Response Functions: Negative shock to rt with different departure (r0) and arrival (rt1)
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While the model considered in this paper abstracted from price changes, future research would benefit

from explicitly including more realistic nominal rigidities. Given the scalability of neural networks to

additional states and dimensions, incorporating inflation as a state variable and a Phillips Curve as an

additional constraint for the central bank is computationally straightforward. Other potential avenues

for future research include changing the central bank’s loss function to omit the smoothing term, or

modifying the commitment technology to allow for more discretionary policy.
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